
UNIVERSITÉ GRENOBLE - ALPES

NANO2017 DEMA

SP 1—Interactive Debugging

Livrable D2 :
Version 1.0 du debugger de

performance

Kevin Pouget, Jean-François Méhaut
UGA-LIG/INRIA CORSE

January 30, 2017

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 2/27

Contents

1 Introduction 5
1.1 Profiling Today . 5
1.2 Interactive Debugging . 7

2 Interactive Performance Profiling 9
2.1 Code Sections to Profile . 9
2.2 Metrics to Measure . 11

3 Understanding the Profilings 13
3.1 Nested and Interleaving Profiling Regions 13
3.2 Presenting the Measurements . 15

4 Conclusion 19

References 21

A Appendix 23
A.1 Access to the Source Code . 23

A.1.1 Download . 23
A.1.2 Installation . 24
A.1.3 Compile libmcgdb-omp . 25
A.1.4 Compile libmcgdb_perf_stat.preload.so 25
A.1.5 OpenMP environment . 25

A.2 Execution Profiler Interface . 27

3

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 4/27

Chapter 1

Introduction

In this document, we present the work done in the first semester of 2016 as part of
the Nano2017 Dema project. While the first year of the project (deliverables D1 and
D3) was focused on improving functional interactive debugging, this year aimed at
introducing performance debugging capabilities into interactive debuggers.

As an introduction, we draw an overview of today’s profiling tools and interactive
debuggers’ capabilities. Then we present in Chapter 2 our solution for performing
interactive code profiling. This interactive profiling environment is the foundation
of the interactive performance debugging methodology developed as part of the
Deliverable D3.

In Chapter 3 we tackle some understanding questions related to the profiling
measurements. The first part treats the problem of nesting and interleaving pro-
files, and the second part discusses the display and understanding of the different
measurements.

1.1. PROFILING TODAY

Code profiling is an essential part of performance debugging. It consists in
measuring how the application, or some part of it, behaves during the execution.
This behavior can be measured against different metrics that highlight some aspects
or others of the execution characteristics. We can sort out the metrics into four broad
categories: hardware, kernel, runtime and language level. We describe below these
different categories and the kind of information they can provide.

These measurements provide different information to the developers, who will
have to combine and confront them with their understanding of the code and hard-
ware characteristics, to understand their meaning.

Once the measurements have been understood, the developers have to decide if
the code can be optimized and sketch out and test new solutions.

5

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Different types of profilings

Hardware counters These counters provide information related to the CPU exe-
cution. They are implemented at hardware level, and hence their availability and
accuracy depend of the processor design. In x86 processors with perf stat or papi,
we can find the following counters:

• instruction and cycles counters

• cache references and misses

• branch instructions and misses

Kernel counters These counters are related to the kernel. Their handling lays
inside the its source code. In Linux kernel with perf stat or papi, we can find the
following counters:

• CPU migrations and context switches

• CPU and task clocks

• major and minor page faults

Runtime counters These counters are tight to the runtime libraries, and hence they
can vary a lot from one library to another. If we look at Aftermath tracing library [4]
for OpenMP [1], we can find the following information:

• beginning and end of OpenMP regions

• thread executing the region

• indices of the OpenMP loop-chunk being executed

Language counter Finally, some counters can be implemented at language level,
usually with the help of compiler instrumentation. For instance, GNU gprof is tight
with the GNU compiler gcc. It provides different information related to the function
calls:

• number of calls,

• time spent inside

• nesting (call tree)

Profiling tools lack interactivity

In the previous subsection we mentioned a few profiling tools and the type of infor-
mation they can provide. However, we did not detail how they can be controlled, as it
is somehow orthogonal. Let us detail the controls they provide:

Aftermath tracing library full execution tracing + post-mortem analysis [4]

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 6/27

CHAPTER 1. INTRODUCTION

gprof full execution tracing + post-mortem analysis [5]

papi counters requested by application during the execution [3]

perf stat full execution profiling or command-line attach/detach [2]

As we can see, these tools offer virtually no interactivity with the user. Papi can be
controlled from the application, but that is mostly for auto-tuning; and perf stat
can be attached and detached on user request, but this is very coarse-grained as the
control originates from the command-line.

To contrast with the lack of interactivity of profiling tools, let us introduce the
capabilities of interactive debugging tools such as GDB, the free debugger of the GNU
project.

1.2. INTERACTIVE DEBUGGING

The main usage of source-level interactive debuggers such as GDB is functional
debugging. In this kind of debugging, the developers run the application step by step,
and confront their mental representation of what they expect the code to do against
what it actually does. Their mental representation comes from the specification of the
application, and they query the actual execution state to the debugger, by printing
the values of variables at different strategic points. A divergence between these two
representations implies a bug in the code, or better stated, a defective statement.

Debugging is an application of the scientific method: observe bugs; think about
the reason they can occur; formulate hypotheses about their causes; draw testable
predictions (eg, if this hypothesis is true, then this variable should have this property);
gather data to test the predictions; locate and fix the bug, or refine the hypothesis.

In this process, interactive debugging helps developers to test their predictions.
Where printf statements can display a few values, defined at compile time, the
debugger gives developers the ability to access most of the program internal state.
Hence, multiple hypothesis and predictions can be tested at the same time, during in
a single run.

In this report, we discuss how we extended interactive debuggers so that develop-
ers can also measure and test performance problems.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 7/27

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 8/27

Chapter 2

Interactive Performance Profiling

The goal of interactive performance profiling is to give developers the ability to easily
profile some specific regions of the code. In this chapter, we study how this capability
can be implemented within a source-level debugger. We focus our study in GDB (the
free debugger of the GNU project) and its Python interface, but the results apply to
any debugger that can be extended with the full-flavored programming language.

In Section 2.1, we introduce the different levels of granularity at which the pro-
filing can be done. Then in Section 2.2, we detail the different metrics that can be
profiled with our tool.

2.1. CODE SECTIONS TO PROFILE

Code performance profiling can be done in two different ways: either during
the process normal execution; or outside of it, with parameters controlled by the
debugger/profiler.

In this section, we first review the normal execution profiling abilities, then con-
tinue with the outside-of-execution profiling.

Normal Execution Profiling

Interactive debuggers have the ability to control the process execution and stop it
upon various events. Among these events, we find the instruction breakpoints, the
memory read/write watchpoints and the system-event catchpoints. Our tool relies
on these events to start and stop the profiling regions:

• function — starts the profiling each time the given function is called, stops it
when it returns (implemented with breakpoints and finish-breakpoints);

– (gdb) profile function compute_kernel

• region— profiles a code region delimited by user breakpoints (or watchpoints/
catchpoints)

– (gdb) profile region main.c:110 kernel.c:25

9

NANO2017/DEMA Livrable D2 : Debugger de performance v1

• manual — the profiling starts and stops on user request, from the command-
line.

– (gdb) profile manual start

– (gdb) profile manual stop

Outside-Of-Execution Profiling

Outside-of-execution profiling relies on GDB and GCC just-in-time compilation
library (libgccjit) cooperation. This cooperation gives GDB the ability to compile
code on-the-fly and insert it temporarily in the application memory space.

We leveraged this feature to help developers to test and profile some code (mainly
function calls) in different situations, without having to recompile and restart the
application execution.

Historically, GDB already knows how to call functions within the debuggee pro-
cess. Now it can profile it as well:

(gdb) call compute_kernel(arg1, arg2, arg3)

(gdb) profile interactive
-repeat:10
-code compute_kernel(arg1, arg2, arg3)
-flags -O3

Our interactive profiling command accepts different parameters:

-code — the code to profile. It can use the local and global variables reachable from
the current location;

-file — alternatively, the code can be passed through a file;

flags — flags to pass when compiling the code. This parameter can be set multiple
times to profile different versions (eg, -00, -03, . . .);

-repeat — how many time the code should be executed during the profiling;

-app — profiles the whole application instead of a code chunk.

It is important to note that the code dynamically inserted by this function is
removed at the end of the profiling (this is the behavior of GDB compile command),
but any side effect remains.

In single-threaded applications, this limitation could be relieved with GDB’s
checkpoint/restart capability (based on POSIX fork system call). However, as of
today, this does not work in multithreaded environments.

Now that we have described how to specify the regions to profile, let us continue
with the nature of the information that can be obtained.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 10/27

CHAPTER 2. INTERACTIVE PERFORMANCE PROFILING

2.2. METRICS TO MEASURE

An interactive debugger cannot, by itself, profile the execution. It is not designed
for that purpose. However, it can cooperate with an existing profiling tool, or any
source of execution information. Let us go though the different information provider
we implemented so far:

Linux /proc filesystem

The Linux kernel provides some process execution information though its\proc\$PID
mount-point. Usually, the information indicates the current value of the counter,
from the beginning of the execution. Hence, to compute a region profile, we just have
to substrate the initial values from the final ones.

In these files, we can find:

/proc/$PID/status voluntary and non voluntary context switches

/proc/$PID/stat user and system execution times, major and minor page faults,
stack size, heap size, . . .

/proc/$PID/io number of bytes read and written

Linux perf stat

Linux perf stat [2] is a tool exposing hardware and kernel counters. In its standard
version, as described in the introduction, it does not allow a precise control of the
profiling regions. However, controlled from the debugger, it can provide fine-grained
measurements.

Our initial approach was to attach and detach perf each time a profiling region
started or stopped. However, this solution appears to be too costly, because of perf
process creation and initialization time.

We turned towards a better approach, that consists in attaching perf to the
application from the beginning of the interactive profiling, and querying the values
of the counter before and after the profiling region.

However, perf does not natively support this usage. To bypass this limitation,
we built a shared-library that is preloaded into perf address space, and prints out
the counters upon receiving a predefined signal (SIGUSR2). As we know that the de-
buggee process is stopped when the profiling regions start and stop, we can guarantee
that perf will measure the right information.

Linux perf can measure a large number of counter. Its configuration is let open
to the debugger user:

(gdb) set profile-perf-counters <counters>

Here are some examples of common event counters:

Hardware events branch-instructions/misses, cache-references/misses, cycles, in-
structions

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 11/27

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Software events alignment-faults, context-switches, cpu/task-clock, major/minor-
page-faults

Debugger breakpoints

Another information provider is the debugger itself. With the help of internal (invisi-
ble) breakpoints and watchpoints, we can count :

• how many times a function is executed

• how many times a memory location accessed within a profiling region.

Open to other tools

In the paragraphs above, we have listed different sources of profiling information.
However, this list is not fixed and can be easily extended in the interactive profiler
source code. The tool wrappers just need to be able to start and stop the profiling on
demand, and provide the values of their different counters. See Appendix A.2 for the
Python interface that should be implemented.

Among the possibilities of extension, we considered GCC gprof language-level
execution counters. Their support would require an inspection of the glibc internal
structures to extract the interesting information.

Another possibility is the information gathered by Aftermath tracing library. In-
stead of its default post-mortem treatment, the information could be measured and
interpreted during the execution, with a cooperation between the interactive profiler
and Aftermath visualization engine.

In this chapter, we introduced the main goals and capabilities of interactive
performance profiling. We described the different granularities at which the profiling
can be done, as well as the nature of the information that can be profiled.

In the following chapter, we discuss some concerns regarding the understanding
of the profilings. We tackle the question of nested and interleaving regions, as well as
the understanding of the measurement values.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 12/27

Chapter 3

Understanding the Profilings

So far, we have demonstrated that profiling could be done interactively, under the
control of a source-level interactive debugger such as GDB, the free debugger of the
GNU project. We detailed the different scope at which this profiling could be done,
as well as the information that could be profiled.

In this chapter, we tackle some questions related to the nesting of profiling zones,
as well as their interleaving, in multithreaded applications. In the second part, we
discuss how these measurements can be presented to the developers. In the Deliver-
able 4 report, we go further in the question of understanding the measurements by
studying an actual performance bug.

3.1. NESTED AND INTERLEAVING PROFILING REGIONS

While profiling code at the function level, the problem of nesting quickly shows
up: when the function being profiled calls itself, a new profiling region is supposed
to start. But should the measurement of the inner function be included in the outer
one? Likewise, when a function is called by several threads, there might be a period
of interleaving in both of the threads.

The problem posed by these situations is in the understanding of the measure-
ments. If the developer asks for the profiling of a function with an implicit recursion,
and nesting is not taken into account, then the profilings will be skewed. Indeed, the
measurements from the inner function will also be part of the outer one, with no
explicit link between the two.

In the following, we discuss possible strategies to deal with such situations.

Nested Regions

We proposed and implemented three strategies to handle the nested profiling regions,
as show in Figure 3.1.1:

First start last stop — only the outer region is recorded.

Per function — every region is profiled independently.

13

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Figure 3.1.1: Different strategies to deal with nested profiling regions.

Per function, soustractive — every region is profiled, but we subtract the measures
of the inner region from the outer one.

From our point of view, these three strategies have their own interest, depending
of the context of the profiling. Only the developers can select the most accurate view
for their debugging objectives. Hence, the three strategies are implemented, and all
the relevant information is recorded. The choice of the visualization is deferred to the
user interface. At the moment, it consists of command-line flags. We consider though
that the first-start-last-stop strategy is the most intuitive, so it is the one displayed
by default.

Interleaving Regions

A similar problem occurs with multithreaded applications, where a function can be
called simultaneously from different threads. Figure 3.1.2 presents two solutions that
can be adopted in this situation:

Figure 3.1.2: Different strategies to deal with interleaving profiling regions.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 14/27

CHAPTER 3. UNDERSTANDING THE PROFILINGS

First start last stop — similarly to the nested regions, this strategy considers the
earliest and latest boundaries of the profiling region

Per thread — this strategy splits the profiling region in two, one per thread. However,
it is not guaranteed that all the profiling back-end tools support this single-
thread profiling.

We did not study in detail the question of interleaving, as this deliverable was
focused on sequential applications. In the Deliverable D4, we did not pursue this
aspect either, as we focused on OpenMP profiling.

Another possibility is to force the sequentiality of the profiling regions: the first
one must finish before the second one starts. This is not difficult to implement in
a source-level debugger (see GDB’s scheduler-locking parameter), however this
may introduce a thread deadlock in the execution if some locks are taken outside of
the profiling regions.

In the following section, we look at how to present the profiling results to the
developers.

3.2. PRESENTING THE MEASUREMENTS

So far, we have presented where and what to measure, along with some nesting
and interleaving problem that can occur during the profiling, but we did not discuss
how to present the measurements to the user. Let us finish this document with that
topic. (Deliverable D4 illustrates this aspect with more details, with the case-study of
an actual performance debugging.)

Raw counters

For a limited number of profiles, the developers may be interested in the raw values
of the counters. These values provide precise information about the execution that
advanced developers may be able to understand and exploit:

(gdb) profile info 1
| function profile[compute_forces_crust_mantle_dev]
| ===
| min_flt: 13
| cycles: 113,705,103
| branch-misses 110,791
| task-clock: 39.381
| branches: 10,622,409
| instructions: 188,404,850
| stalled-cycles-frontend: 50,032,346
| stalled-cycles-backend: 15,004,422
| ...

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 15/27

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Aggregated values

When the number of profiles increases, it quickly gets hard to process the raw values
manually. So our tool can display a summary of a list of profiles, aggregated in
different ways. As part of the prototype development, we implemented three common
aggregators: minimum and maximum values, and arithmetic average:

(gdb) profile summary 2-12
| cycles avg: 11553677
| min: 13549
max: 218766806
stalled-cycles-backend avg: 1517803
min: 1178455
max: 26184303

instructions avg: 19149774
min: 18745
max: 367804777
...

Plotted charts

Charting is a convenient way to represent a large number of measurements. They
allow developers to visualize the variation and find correlations in the different
counters.

We designed a debugger command that allows developers to interactively plot
the charts they are interested in, as well as performing some simple operations on
the dataset:

1. Prepare the profile results for the plot:

(gdb) profile graph plot-all all
cycles | 77230671 73753874 79916837 64098704 82873074 ...
instructions | 120456822 120458577 120451359 120448095 ...
task-clock | 32.186531 30.738873 33.305455 26.724866 ...
...

2. Launch the interactive graph plotter, either on the same computer or on an-
other one:

(gdb) profile graph offline

3. Copy and past the lines that should be plotted. For instance, the number of
instructions against the number of cycles:

instructions | 120456822 120458577 ... <
cycles | 77230671 73753874 ... y2

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 16/27

CHAPTER 3. UNDERSTANDING THE PROFILINGS

| Rendering chart plot of instructions (sorted), cycles
| into /tmp/chart-20170117-155044.png

4. See Figure 3.2.1 for the chart generated.

Figure 3.2.1: Example of a multi-profile plot, showing the instruction count and
number of CPU cycles, sorted over the number of instructions.

In step 3, we can notice two modifiers at the end of the line. These modifiers are
used to customize the way the measurements are plotted. By default, they are all on
the same axis, plotted one against each other. The modifiers change this behavior:

y2 puts the serie on the secondary axis

y# hides the serie (use it with sorting)

< sorts the serie in increasing order (when the measurement order is not impor-
tant), and use the same ordering in the following series (to ensure the column
consistency)

@n keep only the values equals to n in this serie, and apply the same selection in the
following series

/ divides the current serie by the next one

+ sums the current serie with the next one

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 17/27

NANO2017/DEMA Livrable D2 : Debugger de performance v1

These different modifiers were implemented to facilitate the debugging of the
performance problem presented with the Deliverable D4. The list can be easily
extended in Python source code.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 18/27

Chapter 4

Conclusion

In this report, we presented the work done during the first semester of 2016 for the
deliverable D2 of the Nano2017/DEMA project. This deliverable was defined as an
early work towards interactive performance debugging. We successfully developed a
prototype of an interactive profiling tool based on GDB, the source-level functional
debugger of the GNU project.

Our interactive profiling tool allows developers to finely control the execution
of their application, and start/stop on demand the profiling of the execution. We
interfaced our tool with different well-know profiling tools so that developers can
measure performance metrics they are already familiar with.

At the end of semester, our tool was able to profile different code regions (a func-
tion execution, a particular section of the code (defined with the breakpoint syntax)
as well as regions manually controlled by the debugger user, in the command-line
interface. On these regions, our tool can measure different kinds of information, com-
ing from existing profilers. As part of the prototype development, we implemented
the support of /proc kernel counters, perf stat hardware/kernel counters and
debugger breakpoint hits counters.

During the second semester of 2016, we continued this work with the D4 deliv-
erable. We turned towards parallel computing and focused our study on the perfor-
mance debugging of OpenMP applications running on NUMA computers.

19

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 20/27

References

[1] OpenMP 4.0 standard. http://www.openmp.org/mp-documents/OpenMP4.0.
0.pdf.

[2] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/.
Accessed: 18.04.2014.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl., 14(3):189–204, August 2000.

[4] Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann, and Albert
Cohen. Language-Centric Performance Analysis of OpenMP Programs with
Aftermath. In International Workshop on OpenMP (IWOMP), pages 237–250,
October 2016.

[5] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 39(4):49–57, April 2004.

21

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

NANO2017/DEMA Livrable D2 : Debugger de performance v1

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 22/27

Chapter A

Appendix

A.1. ACCESS TO THE SOURCE CODE

A.1.1 Download

mcgdb

• http://dema.gforge.inria.fr/delivrable/2017-01_mcgdb/mcgdb.tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git

Requirements

pip install colorlog pysigset enum34 pyparsing

• Profiling

– Linux Perf (mandatory)
https://perf.wiki.kernel.org/

• Logging

– Colorlog (recommended)
https://pypi.python.org/pypi/colorlog

• GDB internal thread safety:

– Pysigset (recommended)
https://pypi.python.org/pypi/pysigset/

• Task/OpenMP

– Enum34 (Python2 only)
https://pypi.python.org/pypi/enum34

23

http://dema.gforge.inria.fr/delivrable/2017-01_mcgdb/mcgdb.tgz
git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git
https://perf.wiki.kernel.org/
https://pypi.python.org/pypi/colorlog
https://pypi.python.org/pypi/pysigset/
https://pypi.python.org/pypi/enum34

NANO2017/DEMA Livrable D2 : Debugger de performance v1

– pyparsing
https://pypi.python.org/pypi/pyparsing

• Documentation

– Rendering

* Sphinx
https://pypi.python.org/pypi/Sphinx

* Sphinx RTD theme (optional)
https://pypi.python.org/pypi/sphinx_rtd_theme

A.1.2 Installation

Our developments were done with GDB 7.12 and Python 3.5. GDB supports Python 2
and Python 3, and our support should work with both versions.

Load mcGDB from GDB

Put in .gdbinit:

python
sys.path.append("/path/to/Python")
try:

import mcgdb
#mcgdb.initialize()
mcgdb.initialize_by_name()

except Exception as e:
import traceback
print ("Couldn’t load Model-Centric Debugging: {}".format(e))
traceback.print_exc()

end

Put in your $PATH:

ln -s $(which gdb) mcgdb
ln -s mcgdb mcgdb-omp

Then load your binary with mcgdb-omp

Convenience with GDB/mcGDB

Add these lines to your .gdbinit:

almost mandatory:

set height 0
set width 0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 24/27

https://pypi.python.org/pypi/pyparsing
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx_rtd_theme

APPENDIX A. APPENDIX

for convenience:

set breakpoint pending on
set print pretty
set confirm off

for debugging

set python print-stack full

A.1.3 Compile libmcgdb-omp

cd $MCGDB_PATH
cd model/task/environment/openmp/capture/preload
make # generates __binaries__/libmcgdb_omp.preload.so

A.1.4 Compile libmcgdb_perf_stat.preload.so

cd $MCGDB_PATH
cd model/profiling/
make # generates __binaries__/libmcgdb_perf_stat.preload.so

A.1.5 OpenMP environment

Our OpenMP profiling support works with Intel OpenMP.

Intel OpenMP

Intel OpenMP should be compiled with debugging symbols (and optionally OMPT
support). Here is the procedure:

mkdir -p intel_omp/{build,install}
cd intel_omp
INTEL_OMP_HOME=$(pwd)
url checked 17/12/2015
wget https://www.openmprtl.org/sites/default/files/libomp_20150701_oss.tgz
tar xvf libomp_20150701_oss.tgz

cd build
cmake -DCMAKE_C_FLAGS="-g -O0" \

-DCMAKE_INSTALL_PREFIX:PATH=$INTEL_OMP_HOME/install \
-DLIBOMP_OMPT_SUPPORT=true \
$INTEL_OMP_HOME/libomp_oss/

-- LIBOMP: OpenMP Version -- 41
-- LIBOMP: OMPT-support -- true
-- LIBOMP: Build -- 20150701

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 25/27

NANO2017/DEMA Livrable D2 : Debugger de performance v1

-- LIBOMP: Use predefined linker flags -- true

make && make install

export LD_LIBRARY_PATH=$INTEL_OMP_HOME/install/lib

compile OMP application
path/to/clang -fopenmp -g $FILENAME

check that $INTEL_OMP_HOME/install/lib/libiomp5.so is actually used
ldd a.out | grep libiomp5.so

tested with clang 3.5.0
clang --version
clang version 3.5.0
(https://github.com/clang-omp/clang.git a5dbd16db2515a5b2fa82c7dd416d370968646b1)
(https://github.com/clang-omp/llvm 1c313aa94183e765c450be6bda3913e22abc3073)
Target: x86_64-unknown-linux-gnu

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 26/27

APPENDIX A. APPENDIX

A.2. EXECUTION PROFILER INTERFACE

This is the Python interface that should be implemented to integrate an existing
exection profiler into mcgdb interactive profiler (discussed in Deliverable 2, Sec-
tion 2.2).

from collections import OrderedDict

import gdb

class generic_info():
"generic template"
name = "generic template"

def __init__(self):
self.__results = OrderedDict(("name", value))

def start(self):
pass

def stop(self, paused=False):
pass

def to_log(self, ongoing=False):
return self.__results

@property
def results(self):

return self.__results

__COUNTERS__ = [generic_info]

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 27/27

	Introduction
	Profiling Today
	Interactive Debugging

	Interactive Performance Profiling
	Code Sections to Profile
	Metrics to Measure

	Understanding the Profilings
	Nested and Interleaving Profiling Regions
	Presenting the Measurements

	Conclusion
	References
	Appendix
	Access to the Source Code
	Download
	Installation
	Compile libmcgdb-omp
	Compile libmcgdb_perf_stat.preload.so
	OpenMP environment

	Execution Profiler Interface

