
Programming-Model Centric Debugging
for OpenMP

Kevin Pouget
Jean-François Méhaut, Miguel Santana

Université Grenoble Alpes / LIG, STMicroelectronics, France
Nano2017-DEMA project

Dema Workshop, Grenoble
December 12th, 2016

Kevin Pouget Programming-Model Centric Debugging Dema workshop 1 / 39

IntroductionIntroduction

Today’s parallel computing

Multicore processors everywhere
I HPC systems,
I laptop and desktop computers,
I embedded systems ...

High-level programming environments

I tasks with data-dependencies,
I fork-join parallelism
I =⇒ OpenMP

Efficient verification & validation tools

I our research effort!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 2 / 39

IntroductionIntroduction

Today’s parallel computing

Multicore processors everywhere
I HPC systems,
I laptop and desktop computers,
I embedded systems ...

High-level programming environments
I tasks with data-dependencies,
I fork-join parallelism
I =⇒ OpenMP

Efficient verification & validation tools

I our research effort!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 2 / 39

IntroductionIntroduction

Today’s parallel computing

Multicore processors everywhere
I HPC systems,
I laptop and desktop computers,
I embedded systems ...

High-level programming environments
I tasks with data-dependencies,
I fork-join parallelism
I =⇒ OpenMP

Efficient verification & validation tools
I our research effort!

Preliminary Agenda

Wednesday, October 8

9.00 – 9.15
Opening
(Andreas Herkersdorf, TU München and Rainer Leupers, RWTH Aachen)

9.15 – 9.45
[Keynote] Using Execution Traces to Debug Multicore SoCs: An Industrial
Experience
(Miguel Santana, ST Microelectronics)

9.45 – 10.30
Session 1: Challenges and Opportunities of Modern SoC Debug Infrastructure
• From Virtual Targets to USB: Upcoming SoC Debugging Approaches

Michael Eick (Lauterbach) and Rolf Kuehnis (Intel)
• Multicore Start Execution Synchronization

Razvan Ionescu (Freescale)

10.30 – 11.00
Coffee Break

11.00 – 12.30
Session 2: What‘s next?
• On the Shoulders of Giants – Can we Learn Diagnosis from SoC’s Larger

Siblings?
Philipp Wagner (TU Munich)

• Programming-Model Centric Debugging for Multicore Embedded Systems
Kevin Pouget (University of Grenoble)

Session 3: SW Development and Debugging for Manycore Systems
• KPN-based Image Recognition Software Development for Scalable

Manycore Processor SMYLEvideo
Yukoh Matsumoto (TOPS Systems)

• SW Debugging for Multi-tile Systems: The EURETILE Methodology and Tools
Luis Murillo (RWTH Aachen)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 2 / 39

AgendaAgenda

1 Research Context

2 Programming Model Centric Debugging

3 Dema Year 1: Model-Centric Debugging for OpenMP

4 Dema Year 2: Interactive Performance Profiling and Debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 3 / 39

AgendaAgenda

1 Research Context

2 Programming Model Centric Debugging

3 Dema Year 1: Model-Centric Debugging for OpenMP

4 Dema Year 2: Interactive Performance Profiling and Debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 3 / 39

Verification and Validation: DebuggingVerification and Validation: Debugging

Source-Level Interactive Debugging (e.g. GDB)

Developers mental representation VS. actual execution

Understand the different steps of the execution

Source-level interactive debuggers operate at language-level.
What about programming models?

They have no knowledge about high-level programming
environments!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 4 / 39

Verification and Validation: DebuggingVerification and Validation: Debugging

Source-level interactive debuggers operate at language-level.

What about programming models?

They have no knowledge about high-level programming
environments!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 4 / 39

Verification and Validation: DebuggingVerification and Validation: Debugging

Source-level interactive debuggers operate at language-level.
What about programming models?

They have no knowledge about high-level programming
environments!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 4 / 39

Verification and Validation: DebuggingVerification and Validation: Debugging

Source-level interactive debuggers operate at language-level.
What about programming models?

They have no knowledge about high-level programming
environments!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 4 / 39

AgendaAgenda

1 Research Context

2 Programming Model Centric Debugging

3 Dema Year 1: Model-Centric Debugging for OpenMP

4 Dema Year 2: Interactive Performance Profiling and Debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 4 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

Objective

Provide developers with means to
better understand the state of the high-level applications

and control more easily their execution,
suitable for various models and environments.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 5 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

Idea: Integrate programming model concepts
in interactive debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 5 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

1 Provide a Structural Representation
I Draw application architecture diagrams
I Represent the relationship between the entities

2 Monitor Dynamic Behaviors
I Monitor the collaboration between the tasks
I Detect communication, synchronization events

3 Interact with the Abstract Machine
I Control the execution of the entities
I Support interactions with real machine

Kevin Pouget Programming-Model Centric Debugging Dema workshop 6 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

1 Provide a Structural Representation
I Draw application architecture diagrams
I Represent the relationship between the entities

2 Monitor Dynamic Behaviors
I Monitor the collaboration between the tasks
I Detect communication, synchronization events

3 Interact with the Abstract Machine
I Control the execution of the entities
I Support interactions with real machine

Kevin Pouget Programming-Model Centric Debugging Dema workshop 6 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

1 Provide a Structural Representation
I Draw application architecture diagrams
I Represent the relationship between the entities

2 Monitor Dynamic Behaviors
I Monitor the collaboration between the tasks
I Detect communication, synchronization events

3 Interact with the Abstract Machine
I Control the execution of the entities
I Support interactions with real machine

Kevin Pouget Programming-Model Centric Debugging Dema workshop 6 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Programming Model Centric DebuggingProgramming Model Centric Debugging

⇒ Detect and interpret the execution events of the runtime framework

Kevin Pouget Programming-Model Centric Debugging Dema workshop 7 / 39

Information Capture StrategiesInformation Capture Strategies

Breakpoints
and Debug
Information

Preloaded
Library

Specialized
Debug
Module

Capturable Info. High

Limited to API Full

Execution Overhead Significant

Limited Limited

Cooperation between
Debugger and Env.

None

Low Strong

Portability Low

Very Good
Vendor
Specific

Kevin Pouget Programming-Model Centric Debugging Dema workshop 8 / 39

Information Capture StrategiesInformation Capture Strategies

Breakpoints
and Debug
Information

Preloaded
Library

Specialized
Debug
Module

Capturable Info. High Limited to API

Full

Execution Overhead Significant Limited

Limited

Cooperation between
Debugger and Env.

None Low

Strong

Portability Low Very Good

Vendor
Specific

Kevin Pouget Programming-Model Centric Debugging Dema workshop 8 / 39

Information Capture StrategiesInformation Capture Strategies

Breakpoints
and Debug
Information

Preloaded
Library

Specialized
Debug
Module

Capturable Info. High Limited to API Full

Execution Overhead Significant Limited Limited

Cooperation between
Debugger and Env.

None Low Strong

Portability Low Very Good
Vendor
Specific

Kevin Pouget Programming-Model Centric Debugging Dema workshop 8 / 39

Before DEMABefore DEMA

Model-Centric Debugging Before DEMA

components (STHORM NPM)

dataflow (STHORM PEDF)

kernel-based programming (GPU/STHORM OpenCL)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 9 / 39

Before DEMABefore DEMA

Model-Centric Debugging Before DEMA

components (STHORM NPM)

dataflow (STHORM PEDF)

kernel-based programming (GPU/STHORM OpenCL)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 9 / 39

Before DEMABefore DEMA

Dataflow Debugging
for ST/CEA MPSoC STHROM

lo
g

o
b

y
b

u
ll
b

oy
ke

n
n

el
s

Illustration 1: understanding a deadlock situation

Kevin Pouget Programming-Model Centric Debugging Dema workshop 10 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(gdb) info threads

Id Target Id Frame

1 Thread 0xf7e77b 0xf7ffd430 in __kernel_vsyscall ()

* 2 Thread 0xf7e797 operator= (val=..., this=0xa0a1330)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(gdb) info threads

Id Target Id Frame

1 Thread 0xf7e77b 0xf7ffd430 in __kernel_vsyscall ()

* 2 Thread 0xf7e797 operator= (val=..., this=0xa0a1330)

(mcgdb) info graph

pred_controller

ipred

hwcfg pipe

ipf

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(gdb) info threads

Id Target Id Frame

1 Thread 0xf7e77b 0xf7ffd430 in __kernel_vsyscall ()

* 2 Thread 0xf7e797 operator= (val=..., this=0xa0a1330)

(mcgdb) info graph +state

pred_controller

ipred

hwcfg
z

pipe

ipf

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(mcgdb) info graph +state

pred_controller

ipred

hwcfg
z

pipe

ipf

(mcgdb) info actors +state

#0 Controller ‘pred_controller’:

Blocked, waiting for step completion

#1/2/3 Actors ‘pipe/ipref/ipf’:

Blocked, reading from #4 ‘hwcfg’

#4 Actor ‘hwcfg’:

Asleep, Step completed

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(mcgdb) info graph +state

pred_controller

ipred

hwcfg
z

pipe

ipf

(gdb) thread apply all where
Thread 1 (Thread 0xf7e77b):

#0 0xf7ffd430 in __kernel_vsyscall ()

#1 0xf7fcd18c in pthread_cond_wait@ ()

#2 0x0809748f in wait_for_step_completion(struct... *)

#3 0x0809596e in pred_controller_work_function()

#4 0x08095cbc in entry(int, char**) ()

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Dataflow Debugging: Deadlock DetectionDataflow Debugging: Deadlock Detection

(mcgdb) info graph +state

pred_controller

ipred

hwcfg
z

pipe

ipfX

(gdb) thread apply all where
Thread 2 (Thread 0xf7e797):

#0 operator= (val=..., this=0xa0a1330)

#1 pipeRead (data=0) at pipeFilter.c:154 ↙
154 Smb = pedf.io.hwcfgSmb[count];

#2 0x0804da63 in PipeFilter_work_function () at pipe.c:361

#3 0x080a4132 in PedfBaseFilter::controller (this=0xa0d18)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 11 / 39

Before DEMABefore DEMA

OpenCL debugging

OpenCL (and Cuda)

Running on Sthorm,
but primarily used with GPU

Host-side debugging only

BigDFT
Density functional theory solver

High performance computing

Hybrid CPU/GPU

MPI + OpenCL (C/Fortran)

Illustration 2: Why execution visualization is needed

Kevin Pouget Programming-Model Centric Debugging Dema workshop 12 / 39

Before DEMA: How execution visualization can helpBefore DEMA: How execution visualization can help

Let’s consider an example ...

C code

reductionKernel (int n, double * in, double * out){...}
checkStatus(int * ptr, char * msg) { if(ptr == 0) exit(-1);}

void main() {
double * in = malloc(...) ; checkStatus(in,"in failed");

double * out = malloc(...); checkStatus(out,"out failed");

initialize(in);

reductionKernel(N, in, out);

// free ...

}
Kevin Pouget Programming-Model Centric Debugging Dema workshop 13 / 39

Before DEMA: How execution visualization can helpBefore DEMA: How execution visualization can help

OpenCL equivalent:

/* Instantiate the runtime. */

command_queue = clCreateCommandQueue((*context)->context, aDevices[0], 0, &ciErrNum);

kerns->reduction_kernel_d=clCreateKernel(reductionProgram, "reductionKernel_d",&ciErrNum);

oclErrorCheck(ciErrNum,"Failed to create kernel!");

/* Allocate the buffers on the GPU. */

*buff_ptr = clCreateBuffer((*context)->context, CL_MEM_READ_ONLY, *size, NULL, &ciErrNum);

oclErrorCheck(ciErrNum,"Failed to create read buffer!");

/* Push the initial values to the GPU memory. */

cl_int ciErrNum = clEnqueueWriteBuffer((*command_queue)->command_queue, *buffer, CL_TRUE, 0, *size, p...

oclErrorCheck(ciErrNum,"Failed to enqueue write buffer!");

/* Set the kernel parameters. */

clSetKernelArg(kernel, i++,sizeof(*ndat), (void*)ndat); clSetKernelArg(kernel, i++,sizeof(*in), (void*...

clSetKernelArg(kernel, i++,sizeof(*out), (void*)out); clSetKernelArg(kernel, i++,sizeof(cl_dbl)*blk_...

/* Trigger the kernel execution. */

ciErrNum = clEnqueueNDRangeKernel(command_queue->command_queue, kernel, 1, NULL, globalWorkSz, localWo...

oclErrorCheck(errNum,"Failed to enqueue reduction kernel!");

/* Get the result back. */

cl_int ciErrNum = clEnqueueReadBuffer((*command_queue)->command_queue, *input, CL_TRUE, 0, sizeof(cl_d...

oclErrorCheck(ciErrNum,"Failed to enqueue read buffer!");

/* Then release the memory ... */

Kevin Pouget Programming-Model Centric Debugging Dema workshop 14 / 39

Programming Model Centric Debugging: (before Dema) Dataflow and OpenCL DebuggingProgramming Model Centric Debugging: (before Dema) Dataflow and OpenCL Debugging

(mcgdb) print flow (an Eclipse visualization engine)

Update on user request / automatically on exec. stops, step-by-step, ...

Kevin Pouget Programming-Model Centric Debugging Dema workshop 15 / 39

Programming Model Centric Debugging: (before Dema) Dataflow and OpenCL DebuggingProgramming Model Centric Debugging: (before Dema) Dataflow and OpenCL Debugging

(mcgdb) print flow (an Eclipse visualization engine)

Set the kernel arguments.
I 2 scalars
I 2 GPU buffers

clSetKernelArg(kernel, i++, sizeof(*ndat),(void*)ndat);

clSetKernelArg(kernel, i++, sizeof(*in), (void*)in);

clSetKernelArg(kernel, i++, sizeof(*out), (void*)out);

clSetKernelArg(kernel, i++, sizeof(*sz), (void*)sz);

Kevin Pouget Programming-Model Centric Debugging Dema workshop 15 / 39

Programming Model Centric Debugging: (before Dema) Dataflow and OpenCL DebuggingProgramming Model Centric Debugging: (before Dema) Dataflow and OpenCL Debugging

(mcgdb) print flow (an Eclipse visualization engine)

Set the kernel arguments.
I 2 scalars
I 2 GPU buffers

Trigger the kernel execution
I 2 buffers involved

ciErrNum = clEnqueueNDRangeKernel(command_queue->command_q,

kernel, 1, NULL, globalWorkSz,

localWorkSize, 0, NULL, NULL);

Kevin Pouget Programming-Model Centric Debugging Dema workshop 15 / 39

Programming Model Centric Debugging: (before Dema) Dataflow and OpenCL DebuggingProgramming Model Centric Debugging: (before Dema) Dataflow and OpenCL Debugging

(mcgdb) print flow (an Eclipse visualization engine)

Set the kernel arguments.
I 2 scalars
I 2 GPU buffers

Trigger the kernel execution
I 2 buffers involved

Retrieve the result
I buffer content is saved

cl_int ciErrNum = clEnqueueReadBuffer(

(*command_queue)->command_queue,

*input, CL_TRUE, 0, sizeof(cl_double),

out, 0, NULL, NULL);

Kevin Pouget Programming-Model Centric Debugging Dema workshop 15 / 39

AgendaAgenda

1 Research Context

2 Programming Model Centric Debugging

3 Dema Year 1: Model-Centric Debugging for OpenMP

4 Dema Year 2: Interactive Performance Profiling and Debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 15 / 39

Nano2017/Dema projectNano2017/Dema project

Debugging Embedded and Multicore Applications

ARM Juno

asymmetric arch.

ARM big.litle
+ Mali GPU

OpenMP Parallel Programming

Fork/join multithreading

Tasks with dependencies

GNU Gomp, Intel OpenMP, ...

mcGDB debugger

Python extension of GDB

Support for dataflow, components, ...

Developed in partnership with ST
Kevin Pouget Programming-Model Centric Debugging Dema workshop 16 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

¬// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical {

// execute critical

}

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

¬­®¯// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical {

// execute critical

}

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

­®¯// beginning of parallel region

#pragma omp single {

¬// execute single

}//implicit barrier

#pragma omp critical {

// execute critical

}

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}¬­®¯//implicit barrier

#pragma omp critical {

// execute critical

}

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical ¬®¯ {

­ // execute critical

}

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical ®¯ {

¬// execute critical

}­

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical ¯ {

®// execute critical

}¬­

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: OpenMP Execution ControlOpenMP: OpenMP Execution Control

control the execution of the entities

1 start

2 omp start

3 omp step

4 omp next barrier

5 omp critical next

6 omp critical next

7 omp critical next

8 omp critical next

int main() {

// beginning of main function

#pragma omp parallel {

// beginning of parallel region

#pragma omp single {

// execute single

}//implicit barrier

#pragma omp critical {

¯// execute critical

}¬­®

Kevin Pouget Programming-Model Centric Debugging Dema workshop 17 / 39

OpenMP: structural representationOpenMP: structural representation

... provide a structural representation
... provide details about entity state

1 fork-join =⇒ OpenMP sequence diagrams

2 task-based =⇒ mcGDB+Temanejo cooperation

Kevin Pouget Programming-Model Centric Debugging Dema workshop 18 / 39

OpenMP: structural representationOpenMP: structural representation

... provide a structural representation
... provide details about entity state

1 fork-join =⇒ OpenMP sequence diagrams

2 task-based =⇒ mcGDB+Temanejo cooperation

Kevin Pouget Programming-Model Centric Debugging Dema workshop 18 / 39

OpenMP: structural representationOpenMP: structural representation

... provide a structural representation
... provide details about entity state

1 fork-join =⇒ OpenMP sequence diagrams

2 task-based =⇒ mcGDB+Temanejo cooperation

Kevin Pouget Programming-Model Centric Debugging Dema workshop 18 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: OpenMP Sequence DiagramOpenMP: OpenMP Sequence Diagram

1 start

2 omp start

3 omp step

4 omp next barrier

5 thread 2

6 omp critical next

7 omp critical next

8 omp critical next

Kevin Pouget Programming-Model Centric Debugging Dema workshop 19 / 39

OpenMP: structural representationOpenMP: structural representation

... provide a structural representation
... provide details about entity state

1 fork-join =⇒ OpenMP sequence diagrams

2 task-based=⇒ mcGDB+Temanejo cooperation

Kevin Pouget Programming-Model Centric Debugging Dema workshop 20 / 39

Task-Graph VisualizationTask-Graph Visualization

(HLRS Stuttgart) Temanejo ...

3 is a great visualization tool for task debugging,
7 and does not support source-level debugging.

GDB/mcGDB ...

7 has no visualization engine,
3 but provides source debugging at language (gdb) and model level.

So let’s combine them!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 21 / 39

Task-Graph VisualizationTask-Graph Visualization

(HLRS Stuttgart) Temanejo ...

3 is a great visualization tool for task debugging,

7 and does not support source-level debugging.

GDB/mcGDB ...

7 has no visualization engine,

3 but provides source debugging at language (gdb) and model level.

So let’s combine them!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 21 / 39

Task-Graph VisualizationTask-Graph Visualization

(HLRS Stuttgart) Temanejo ...

3 is a great visualization tool for task debugging,

7 and does not support source-level debugging.

GDB/mcGDB ...

7 has no visualization engine,

3 but provides source debugging at language (gdb) and model level.

So let’s combine them!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 21 / 39

Task-Graph VisualizationTask-Graph Visualization

mcGDB – Temanejo cooperation:

Temanejo

task graph visualization

simple model-level execution control.

sequence diagram visualization.

mcGDB

task graph and exec. events capture,

advanced model-level exec. control.

GDB

language and assembly level
execution control, memory inspection.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 22 / 39

Task-Graph VisualizationTask-Graph Visualization

mcGDB – Temanejo cooperation:

Temanejo

task graph visualization

simple model-level execution control.

sequence diagram visualization.

mcGDB

task graph and exec. events capture,

advanced model-level exec. control.

GDB

language and assembly level
execution control, memory inspection.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 22 / 39

Task-Graph VisualizationTask-Graph Visualization

mcGDB – Temanejo cooperation:

Temanejo

task graph visualization

simple model-level execution control.

sequence diagram visualization.

mcGDB

task graph and exec. events capture,

advanced model-level exec. control.

GDB

language and assembly level
execution control, memory inspection.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 22 / 39

Task-Graph VisualizationTask-Graph Visualization

mcGDB – Temanejo cooperation:

Temanejo

task graph visualization

simple model-level execution control.

sequence diagram visualization.

mcGDB

task graph and exec. events capture,

advanced model-level exec. control.

GDB

language and assembly level
execution control, memory inspection.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 22 / 39

mcGDB + TemanejomcGDB + Temanejo

Node color
I sources files

I debug state
I executed by

Links color
I dependencies

Task 3 blocked

blue finished
purple blocked

Exec. finished

Kevin Pouget Programming-Model Centric Debugging Dema workshop 23 / 39

mcGDB + TemanejomcGDB + Temanejo

Node color
I sources files

I debug state
I executed by

Links color
I dependencies

Task 3 blocked

blue finished
purple blocked

Exec. finished

Kevin Pouget Programming-Model Centric Debugging Dema workshop 23 / 39

mcGDB + TemanejomcGDB + Temanejo

Node color
I sources files
I debug state

I executed by

Links color
I dependencies

Task 3 blocked

blue finished
purple blocked

Exec. finished

Kevin Pouget Programming-Model Centric Debugging Dema workshop 23 / 39

mcGDB + TemanejomcGDB + Temanejo

Node color
I sources files
I debug state
I executed by

Links color
I dependencies

Task 3 blocked

blue finished
purple blocked

Exec. finished

Kevin Pouget Programming-Model Centric Debugging Dema workshop 23 / 39

AgendaAgenda

1 Research Context

2 Programming Model Centric Debugging

3 Dema Year 1: Model-Centric Debugging for OpenMP

4 Dema Year 2: Interactive Performance Profiling and Debugging

Kevin Pouget Programming-Model Centric Debugging Dema workshop 23 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Performance Debugging Methodology

1 Benchmark the code

2 Locate the time-expensive areas

3 Estimate their (in)efficiency: how is the time spent? can it be reduced?

4 Optimize the code accordingly

5 Go back to step 1.

Source-level debuggers (gdb/mcgdb) have interactivity!

execute the code step-by-step,

study the state,

alter it to test hypotheses on-the-fly

. . . but nothing for performance debugging!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 24 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Performance Debugging Methodology

1 Benchmark the code

2 Locate the time-expensive areas

3 Estimate their (in)efficiency: how is the time spent? can it be reduced?

4 Optimize the code accordingly

5 Go back to step 1.

Profiling tools

gprof

perf stat,

Papi

trace-based analyzers (aftermath)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 24 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Performance Debugging Methodology

1 Benchmark the code

2 Locate the time-expensive areas

3 Estimate their (in)efficiency: how is the time spent? can it be reduced?

4 Optimize the code accordingly

5 Go back to step 1.

Profiling tools : not really interactive

gprof, perf stat, aftermath, . . .
I profile all or nothing (perf can attach/detach)

Papi
I customizable, but from within the code

Kevin Pouget Programming-Model Centric Debugging Dema workshop 24 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Performance Debugging Methodology

1 Benchmark the code

2 Locate the time-expensive areas

3 Estimate their (in)efficiency: how is the time spent? can it be reduced?

4 Optimize the code accordingly

5 Go back to step 1.

Source-level debuggers (gdb/mcgdb) have interactivity!

execute the code step-by-step,

study the state,

alter it to test hypotheses on-the-fly

. . . but nothing for performance debugging!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 24 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Performance Debugging Methodology

1 Benchmark the code

2 Locate the time-expensive areas

3 Estimate their (in)efficiency: how is the time spent? can it be reduced?

4 Optimize the code accordingly

5 Go back to step 1.

Source-level debuggers (gdb/mcgdb) have interactivity!

execute the code step-by-step,

study the state,

alter it to test hypotheses on-the-fly

. . . but nothing for performance debugging!

Kevin Pouget Programming-Model Centric Debugging Dema workshop 24 / 39

Interactive Performance DebuggingInteractive Performance Debugging

This is an on-going work

1 Interactive profiling
I What to measure?
I Where to profile?

2 OpenMP profiling

3 MG benchmark performance bug and mcGDB
I loop profiling
I intermediate profiling charts
I execution control and profiling
I performance optimization and results

Kevin Pouget Programming-Model Centric Debugging Dema workshop 25 / 39

Interactive Performance DebuggingInteractive Performance Debugging

What to measure?

/proc/$PID/... values (mem usage, context switches, ...)

gprof counters

function/address execution counter (breakpoints involved)

perf stat counters

I cache-misses, cache-references
I instructions
I cpu-clock, task-clock
I node-load-misses, node-store-misses

Kevin Pouget Programming-Model Centric Debugging Dema workshop 26 / 39

Interactive Performance DebuggingInteractive Performance Debugging

What to measure?

/proc/$PID/... values (mem usage, context switches, ...)

gprof counters

function/address execution counter (breakpoints involved)

perf stat counters
I cache-misses, cache-references
I instructions
I cpu-clock, task-clock
I node-load-misses, node-store-misses

Kevin Pouget Programming-Model Centric Debugging Dema workshop 26 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Where to profile?

During the execution:
I a function execution
I a region: from line ... to line ... (breakpoints involved)
I start and stop on user request

I what about OpenMP?

Outside of the normal execution (base on gdb+gcc dynamic compilation)

I code compiled on-demand and inserted in the process address-space
I custom function calls,
I repeat n times
I test different compilation flags, ...

Kevin Pouget Programming-Model Centric Debugging Dema workshop 27 / 39

Interactive Performance DebuggingInteractive Performance Debugging

Where to profile?

During the execution:
I a function execution
I a region: from line ... to line ... (breakpoints involved)
I start and stop on user request
I what about OpenMP?

Outside of the normal execution (base on gdb+gcc dynamic compilation)

I code compiled on-demand and inserted in the process address-space
I custom function calls,
I repeat n times
I test different compilation flags, ...

Kevin Pouget Programming-Model Centric Debugging Dema workshop 27 / 39

OpenMP ProfilingOpenMP Profiling

Profiling the whole execution: Aftermath1 Dema SP2

Fine-grain Interactive Profiling: mcGDB profiler

use mcGDB for a fine-grained profiling of loops and tasks

use mcGDB to trigger the generation of on-going Aftermath traces
1http://www.openstream.info/aftermath

Kevin Pouget Programming-Model Centric Debugging Dema workshop 28 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

performance bug on idchire (numa arch, 24 nodes, 192 cores)

#pragma omp for /* mc.c function resid */

for (i3 = 1; i3 < n3-1; i3++) {

for (i2 = 1; i2 < n2-1; i2++) {

for (i1 = 0; i1 < n1; i1++) {

u1[i1] = u[i3][i2-1][i1] + u[i3][i2+1][i1]

+ u[i3-1][i2][i1] + u[i3+1][i2][i1];

u2[i1] = u[i3-1][i2-1][i1] + u[i3-1][i2+1][i1]

+ u[i3+1][i2-1][i1] + u[i3+1][i2+1][i1];

}

for (i1 = 1; i1 < n1-1; i1++) {

r[i3][i2][i1] = v[i3][i2][i1] - a[0] * u[i3][i2][i1]

- a[2] * (u2[i1] + u1[i1-1] + u1[i1+1])

- a[3] * (u2[i1-1] + u2[i1+1]);

} } }
Kevin Pouget Programming-Model Centric Debugging Dema workshop 29 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

performance bug on idchire (numa arch, 24 nodes, 192 cores)
CPU 8
CPU 12
CPU 16
CPU 20
CPU 24
CPU 28
CPU 32
CPU 36
CPU 40
CPU 44
CPU 48
CPU 52
CPU 56
CPU 60
CPU 64
CPU 68
CPU 72
CPU 76
CPU 80
CPU 84
CPU 88
CPU 92
CPU 96
CPU 100
CPU 104
CPU 108
CPU 112
CPU 116
CPU 120
CPU 124
CPU 128
CPU 132
CPU 136
CPU 140
CPU 144
CPU 148

3
.0

0
0
e
+

1
2

3
.1

0
0
e
+

1
2

3
.2

0
0
e
+

1
2

3
.3

0
0
e
+

1
2

3
.4

0
0
e
+

1
2

3
.5

0
0
e
+

1
2

3
.6

0
0
e
+

1
2

3
.7

0
0
e
+

1
2

3
.8

0
0
e
+

1
2

3
.9

0
0
e
+

1
2

4
.0

0
0
e
+

1
2

4
.1

0
0
e
+

1
2

4
.2

0
0
e
+

1
2

4
.3

0
0
e
+

1
2

4
.4

0
0
e
+

1
2

4
.5

0
0
e
+

1
2

4
.6

0
0
e
+

1
2

Y axis is time
Kevin Pouget Programming-Model Centric Debugging Dema workshop 29 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

performance bug on idchire (numa arch, 24 nodes, 192 cores)

Use mcGDB knowledge for a fine-grained profiling of loops and tasks

attach/detach perf stat when a loop iteration starts/stops
I force sequentiality for accuracy / feasibility

| #23 loop profile

| cache-references: 20,322

| cycles: 41,501,975

| node-stores: 2,828

| node-misses: 2,445

| instructions: 78,896,610

| omp_loop_len: 1

| omp_loop_start: 441

| numa node/code: 19/156

| Kevin Pouget Programming-Model Centric Debugging Dema workshop 29 / 39

mg.C performance bug: intermediate chart viewmg.C performance bug: intermediate chart view

Instructions count sorted by numa core id; columns are loop iterations

Two phases (2 then 1 chunk), but the instruction count is constant.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 30 / 39

mg.C performance bug: intermediate chart viewmg.C performance bug: intermediate chart view

Loop length and thread 1st loop index sorted by numa core id (hidden)

(confirmation that the instruction count depends on the loop length)

Kevin Pouget Programming-Model Centric Debugging Dema workshop 31 / 39

mg.C performance bug: intermediate chart viewmg.C performance bug: intermediate chart view

Instructions count and cycles sorted by numa core id (hidden)

With the same instruction count, some cores consume less cycles.

Kevin Pouget Programming-Model Centric Debugging Dema workshop 32 / 39

mg.C performance bug: intermediate chart viewmg.C performance bug: intermediate chart view

Cycles and node-misses sorted by numa core id (hidden)

Low cycle count → low node misses =⇒ numa memory-location problem

Kevin Pouget Programming-Model Centric Debugging Dema workshop 33 / 39

OpenMP Profiling: mcGDB / Aftermath cooperationOpenMP Profiling: mcGDB / Aftermath cooperation

Cooperation with Aftermath

Correlation could have been highlighted with the help of Aftermath:

I (gdb) aftermath trace dump
I (gdb) aftermath visu reload

I (gdb) aftermath trace insert marker “stopped here”

=⇒ preliminary code written this summer

Kevin Pouget Programming-Model Centric Debugging Dema workshop 34 / 39

OpenMP Profiling: execution control and inspectionOpenMP Profiling: execution control and inspection

Profiling breakpoint

(gdb) profile break if node-misses < 100

Loop control

(gdb) omp loop break before/after next

Numa-aware state inspection

(gdb) numa pagemap &r[$omp_loop_start()][0][0]

| Address 0x7fdbc9336380 is located on node N12

(gdb) numa current_node

| Thread #102 is bound to node N12, cpu 100.

https://forge.imag.fr/projects/pagemap by B. Videau et V. Danjean
Kevin Pouget Programming-Model Centric Debugging Dema workshop 35 / 39

https://forge.imag.fr/projects/pagemap

OOpenMP Profiling: numa optimizationsOOpenMP Profiling: numa optimizations

(gdb) run # on breakpoint after memory alloc

19s + 54s # init and compute time

normal run, launched from shell or GDB

(gdb) numa spread_heap # on breakpoint after memory alloc

20s + 13s

spreads the whole heap (3GB) over the nodes, page by page

⇒ confirmation of numa memory-location problem

(gdb) numa spread_3D_mat r[$i] m3[$i] m2[$i] m1[$i]

34s + 16s # i=9 and m3[$i]=m2[$i]=m1[$i]=514

spread only r[9] and u[9] 3D matrices

spread them according to OpenMP static loop distribution

⇒ confirmation of numa memory-location problem

Kevin Pouget Programming-Model Centric Debugging Dema workshop 36 / 39

OOpenMP Profiling: numa optimizationsOOpenMP Profiling: numa optimizations

(gdb) run # on breakpoint after memory alloc

19s + 54s # init and compute time

normal run, launched from shell or GDB

(gdb) numa spread_heap # on breakpoint after memory alloc

20s + 13s

spreads the whole heap (3GB) over the nodes, page by page

⇒ confirmation of numa memory-location problem

(gdb) numa spread_3D_mat r[$i] m3[$i] m2[$i] m1[$i]

34s + 16s # i=9 and m3[$i]=m2[$i]=m1[$i]=514

spread only r[9] and u[9] 3D matrices

spread them according to OpenMP static loop distribution

⇒ confirmation of numa memory-location problem

Kevin Pouget Programming-Model Centric Debugging Dema workshop 36 / 39

OOpenMP Profiling: numa optimizationsOOpenMP Profiling: numa optimizations

(gdb) run # on breakpoint after memory alloc

19s + 54s # init and compute time

normal run, launched from shell or GDB

(gdb) numa spread_heap # on breakpoint after memory alloc

20s + 13s

spreads the whole heap (3GB) over the nodes, page by page

⇒ confirmation of numa memory-location problem

(gdb) numa spread_3D_mat r[$i] m3[$i] m2[$i] m1[$i]

34s + 16s # i=9 and m3[$i]=m2[$i]=m1[$i]=514

spread only r[9] and u[9] 3D matrices

spread them according to OpenMP static loop distribution

⇒ confirmation of numa memory-location problem

Kevin Pouget Programming-Model Centric Debugging Dema workshop 36 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

Back to Aftermath for comparison ... 1/Native execution

CPU 8
CPU 12
CPU 16
CPU 20
CPU 24
CPU 28
CPU 32
CPU 36
CPU 40
CPU 44
CPU 48
CPU 52
CPU 56
CPU 60
CPU 64
CPU 68
CPU 72
CPU 76
CPU 80
CPU 84
CPU 88
CPU 92
CPU 96
CPU 100
CPU 104
CPU 108
CPU 112
CPU 116
CPU 120
CPU 124
CPU 128
CPU 132
CPU 136
CPU 140
CPU 144
CPU 148

3
.0

0
0
e
+

1
2

3
.1

0
0
e
+

1
2

3
.2

0
0
e
+

1
2

3
.3

0
0
e
+

1
2

3
.4

0
0
e
+

1
2

3
.5

0
0
e
+

1
2

3
.6

0
0
e
+

1
2

3
.7

0
0
e
+

1
2

3
.8

0
0
e
+

1
2

3
.9

0
0
e
+

1
2

4
.0

0
0
e
+

1
2

4
.1

0
0
e
+

1
2

4
.2

0
0
e
+

1
2

4
.3

0
0
e
+

1
2

4
.4

0
0
e
+

1
2

4
.5

0
0
e
+

1
2

4
.6

0
0
e
+

1
2

Kevin Pouget Programming-Model Centric Debugging Dema workshop 37 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

Back to Aftermath for comparison ... 2/Heap spread
CPU 4
CPU 8
CPU 12
CPU 16
CPU 20
CPU 24
CPU 28
CPU 32
CPU 36
CPU 40
CPU 44
CPU 48
CPU 52
CPU 56
CPU 60
CPU 64
CPU 68
CPU 72
CPU 76
CPU 80
CPU 84
CPU 88
CPU 92
CPU 96
CPU 100
CPU 104
CPU 108
CPU 112
CPU 116
CPU 120
CPU 124
CPU 128
CPU 132
CPU 136
CPU 140

4
.8

0
0
e
+

1
1

4
.9

0
0
e
+

1
1

5
.0

0
0
e
+

1
1

5
.1

0
0
e
+

1
1

5
.2

0
0
e
+

1
1

5
.3

0
0
e
+

1
1

5
.4

0
0
e
+

1
1

5
.5

0
0
e
+

1
1

5
.6

0
0
e
+

1
1

5
.7

0
0
e
+

1
1

Kevin Pouget Programming-Model Centric Debugging Dema workshop 37 / 39

Before going further: mg.C performance bugBefore going further: mg.C performance bug

Back to Aftermath for comparison ... 3/Matrix remapped
CPU 4
CPU 8
CPU 12
CPU 16
CPU 20
CPU 24
CPU 28
CPU 32
CPU 36
CPU 40
CPU 44
CPU 48
CPU 52
CPU 56
CPU 60
CPU 64
CPU 68
CPU 72
CPU 76
CPU 80
CPU 84
CPU 88
CPU 92
CPU 96
CPU 100
CPU 104
CPU 108
CPU 112
CPU 116
CPU 120
CPU 124
CPU 128
CPU 132
CPU 136
CPU 140

4
.6

0
0
e
+

1
1

4
.7

0
0
e
+

1
1

4
.8

0
0
e
+

1
1

4
.9

0
0
e
+

1
1

5
.0

0
0
e
+

1
1

5
.1

0
0
e
+

1
1

5
.2

0
0
e
+

1
1

5
.3

0
0
e
+

1
1

5
.4

0
0
e
+

1
1

Kevin Pouget Programming-Model Centric Debugging Dema workshop 37 / 39

ConclusionConclusion

Debuggers lack information about
I programming models
I runtime libraries
I architectures

They could benefit from additional knowledge
I to provide a better code execution understanding

Our contribution: model-centric interactive debugging and profiling

mcGDB extends GDB through its Python interface:
I Extensible framework for model-centric debugging

and performance testing and profiling

mcGDB OpenMP support:
I Developed for GNU Gomp and Intel OpenMP
I Better control and understanding of fork-join / task-based execution
I Fine-grained loop and task performance profiling

Kevin Pouget Programming-Model Centric Debugging Dema workshop 38 / 39

ConclusionConclusion

Debuggers lack information about
I programming models
I runtime libraries
I architectures

They could benefit from additional knowledge
I to provide a better code execution understanding

Our contribution: model-centric interactive debugging and profiling

mcGDB extends GDB through its Python interface:
I Extensible framework for model-centric debugging

and performance testing and profiling

mcGDB OpenMP support:
I Developed for GNU Gomp and Intel OpenMP
I Better control and understanding of fork-join / task-based execution
I Fine-grained loop and task performance profiling

Kevin Pouget Programming-Model Centric Debugging Dema workshop 38 / 39

ConclusionConclusion

Debuggers lack information about
I programming models
I runtime libraries
I architectures

They could benefit from additional knowledge
I to provide a better code execution understanding

Our contribution: model-centric interactive debugging and profiling

mcGDB extends GDB through its Python interface:
I Extensible framework for model-centric debugging

and performance testing and profiling

mcGDB OpenMP support:
I Developed for GNU Gomp and Intel OpenMP
I Better control and understanding of fork-join / task-based execution
I Fine-grained loop and task performance profiling

Kevin Pouget Programming-Model Centric Debugging Dema workshop 38 / 39

ConclusionConclusion

Debuggers lack information about
I programming models
I runtime libraries
I architectures

They could benefit from additional knowledge
I to provide a better code execution understanding

Our contribution: model-centric interactive debugging and profiling

mcGDB extends GDB through its Python interface:
I Extensible framework for model-centric debugging

and performance testing and profiling

mcGDB OpenMP support:
I Developed for GNU Gomp and Intel OpenMP
I Better control and understanding of fork-join / task-based execution
I Fine-grained loop and task performance profiling

Kevin Pouget Programming-Model Centric Debugging Dema workshop 38 / 39

Programming-Model Centric Debugging
for OpenMP

Kevin Pouget
Jean-François Méhaut, Miguel Santana

Université Grenoble Alpes / LIG, STMicroelectronics, France
Nano2017-DEMA project

Dema Workshop, Grenoble
December 12th, 2016

Kevin Pouget Programming-Model Centric Debugging Dema workshop 39 / 39

